

OCT 0 1 2008

Department of Environmental Quality State Air Program

Pacific Ethanol, Inc.

September 29, 2008

Dan Pitman Idaho Department of Environmental Quality Air Pollution Control Division 1410 N. Hilton Boise, ID 83706

Subject:

Air Permit Revision for Pacific Ethanol Magic Valley, LLC

Burley, Idaho

Dear Mr. Pitman;

Pacific Ethanol, Inc. submits this Authority to Construct permit amendment for Pacific Ethanol Magic Valley, LLC (Facility), permit number P-2008.0025. The following submittal summarizes the proposed changes to the facility supported by the attachments. The facility will remain a synethetic minor source with respect to both Title V permitting and New Source Review.

Distillation Scrubber Stack Eliminated

The distillation scrubber (CE08) will no longer vent to atmosphere from stack SV13, but will be routed to the RTO (SV12).

SV13 Distillation Scrubber Stack

Species	VOC (tpy)	Acetaldehyde (tpy)	Formaldehyde (tpy)
Past Limited Emissions	2.32	2.1	0.0010
Proposed Limited Emissions	0	0.00	0.00
Net change in Emissions	-2.32	-2.10	0.00

Regenerative Catalytic Oxidizer Converted to Conventional RTO

The Facility proposes to replace the currently permitted SV12 Regenerative Catalytic Oxidizer (RCO) with a Regenerative Thermal Oxidizer (RTO). Physically, this only consists of removing the catalytic packing in the existing unit and increasing the

400 CAPITOL MALL, STE 2060 SACRAMENTO, CA 95814 www.pacificethanol.net temperature. The Facility proposes to continuously monitor combustion temperature in order to demonstrate compliance.

Speciated emissions at the RTO have been revised based on emissions testing and our review of a broader dataset of compliance data from similar units. Stack parameter including height and flow rate have been adjusted based on as-built information.

Please note that the stack orientation is at a 45 degree angle. This has been accounted by adjusting the flow rate found in testing to account for only the vertical component of the exit velocity as calculated below.

14068.77 ACFM * SIN(45) = 9948.12 ACFM

SV12 RTO Stack

Species	VOC (tpy)	Acetaldehyde (tpy)	Formaldehyde (tpy)
Past Limited Emissions	20.31	2.25	0.0057
Proposed Limited Emissions	22.63	1.24	0.197
Net change in Emissions	2.32	-1.01	0.191

New Operation: Grain Grinding and Loadout

The Facility proposes to incorportate grain grinding and grain loadout into operations. Therefore, grain throughputs and fugitive emissions will increase. No new point sources of emissions are associated and no change to allowed emissions at existing point sources is necessary.

New Control Device: Ethanol Loadout Flare

The facility has decided to install a separate loadout flare to control emissions from the truck and rail loadout operations rather than route this source to the RTO. Control at the new device will be equivalent to control at the RTO unit, but the facility does not wish to reduce allowed emissions at the RTO therefore this leads to a net increase in emissions.

SV14 Loadout Flare

Species	VOC (tpy)	NOx (tpy)	CO (tpy)
Past Limited Emissions			an milat
Proposed Limited Emissions	4.20	2.43	4.06
Net change in Emissions	4.20	2.43	4.06

Facility-wide Emissions Change

Table 1 illustrates the predicted increase in emissions from proposed modifications at the Facility.

Table 1: Summary of Net Emissions Change Due to Proposed Modification

	PM	PM ₁₀	PM _{2.5}	SO ₂	NO _x	voc	со	HAPS
Total Emissions	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)
Past Limited Emissions	39.57	22.86	20.45	0.6	50.98	35.25	33.69	7.73
Proposed Limited Emissions	47.66	24.50	21.13	0.60	53.41	39.45	37.75	4.82
Net change in Emissions	8.09	1.64	0.68	0.00	2.43	4.20	4.06	-2.91

Toxic Air Pollutant (TAP) Emission Rates Used for Air Impact Modeling

As illustrated in Table 2, arsenic, benzene, cadmium, nickel, formaldehyde, and acetaldehyde exceed the screening emission limits (ELs) given in IDAPA 58.01.01.585 and IDAPA 58.01.01.586. TAP modeling has been conducted to show facility compliance. The air dispersion analysis can be found in Attachment A.

Table 2: TAP Emission Rates Used for Air Impact Modeling

Total Emissions	As (lb/hr)	Ben (lb/hr)	Cd (lb/hr)	Ni (lb/hr)	Form (lb/hr)	Acetal (lb/hr)
Screening ELs	1.50E-6	8.0E-4	3.70E-6	2.7E-5	5.10E-4	3.00e-3
Proposed TAP Emission Rates	4.56E-5	3.38E-2	2.51E-4	4.79E-4	7.34E-2	2.90E-1

The revised emission calculations are included as Attachment B, and the applicable Idaho Department of Environmental Quality forms can be found in Attachment C.

If you have any questions or comments, please feel free to contact me at the number listed below or Bill VonSee of Natural Resource Group, LLC at (612) 339-2478.

Based on information and belief formed after reasonable inquiry, the statements and information in the attached documents are true, accurate, and complete.

Sincerely,

Cheryl Pagard

Director of Permitting and Compliance

(916) 403-2129

Enclosures: As noted

Charge Pagan

Attachment A Air Dispersion Analysis

AIR DISPERSION MODELING ANALYSIS

Pacific Ethanol Magic Valley, LLC Burley, Idaho

Prepared for:
Pacific Ethanol, Inc.
400 Capitol Mall
Suite 2060
Sacramento, CA 95814

Prepared by:
Natural Resource Group, LLC
1000 IDS Center
80 South Eighth Street
Minneapolis, MN 55402

September 2008

Project No. PAC2007-091.06.330

Air Dispersion Modeling Analysis

Pacific Ethanol Magic Valley, LLC Burley, Idaho

Prepared for:

Pacific Ethanol, Inc. 400 Capitol Mall Suite 2060 Sacramento, CA 95814

Prepared by:

Natural Resource Group, LLC 1000 IDS Center 80 South Eighth Street Minneapolis, MN 55402

September 2008

TABLE OF CONTENTS

Secti	on		<u>Page</u>
EXE	CUTIVE	SUMMARY	iii
1.0 2.0	INTR FACI	ODUCTIONLITY EMISSIONS SOURCES	
	2.1	Potential Emissions	2
	2.2	Source Types and Parameters	2
3.0	MOD	ELING METHODOLOGY	3
	3.1	Modeling Applicability	3
	3.2	Significance Modeling	3
TABL	.E 3-1. S	SIGNIFICANT CONTRIBUTION LEVELS	3
TABL	.E 3-2. /	ACCEPTABLE AMBIENT CONCENTRATIONS	4
	3.3	Full Impact Analysis (FIA)	4
TABL	.E 3-3. I	NATIONAL AMBIENT AIR QUALITY STANDARDS	5
AND	COMPL	LIANCE METHOD	5
	3.4	Modeling Options	5
	3.5	Ambient Air Boundary	5
	3.6	Receptor Grid	5
	3.7	Meteorological Data	6
	3.8	Building Downwash	6
	3.9	GEP Stack Height Determinations	6
4.0	DISP	ERSION MODELING RESULTS	
	4.1	Significance Modeling Results	8
	4.2	Nearby Sources	8
	4.3	Background Concentrations	8
TABL	E 4-1. E	BACKGROUND CONCENTRATIONS FOR BURLEY, IDAHO	9
	4.4	NAAQS Analysis	9
5 N	MODI	FLING RUNS AND OUTPUT	10

LIST OF TABLES

<u>Table</u>	Description	<u>Page</u>
TABLE ES-1.	SUMMARY OF DISPERSION MODELING ANALYSIS RESULTS	iii
TABLE 3-1.	SIGNIFICANT CONTRIBUTION LEVELS	3
TABLE 3-2.	ACCEPTABLE AMBIENT CONCENTRATIONS	4
TABLE 3-3.	NATIONAL AMBIENT AIR QUALITY STANDARDS AND COMPLIAN	NCE
	METHOD	5
TABLE 4-1.	BACKGROUND CONCENTRATIONS FOR BURLEY, IDAHO	9

LIST OF APPENDICES

<u>Appendix</u>	Description
APPENDIX A	MODEL INPUTS AND RESULTS
APPENDIX B	FACILITY PLOT PLAN
APPENDIX C	MODELING FILES (CD-ROM)

EXECUTIVE SUMMARY

Natural Resource Group, LLC (NRG) has performed an air dispersion modeling analysis for the Pacific Ethanol Magic Valley, LLC (Facitly) facility located in Burley, Idaho, using the United States Environmental Protection Agency's (USEPA's) AMS/EPA Regulatory Model (AERMOD). AERMOD is a steady-state Gaussian plume model recommended by the USEPA for assessing pollutant impacts from facilities with emission points influenced by building downwash, such as the Magic Valley ethanol plant. This dispersion modeling analysis is required as part of the amendment to Application for the Authority to Construct submitted September 2008 to the Idaho Department of Environmental Quality (IDEQ).

In accordance with Idaho Department of Environmental Quality (IDEQ)'s State of Idaho Air Quality Modeling Guideline (the Guideline) dated December 31, 2002, the ambient air impacts resulting from the proposed construction of the Facility's ethanol plant have been assessed for particulate matter less than 10 microns in diameter (PM₁₀), nitrogen oxides (NO_X), acetaldehyde, arsenic, benzene, cadmium, formaldehyde, and nickel. The results of the dispersion modeling analysis performed are summarized in the following table.

TABLE ES-1. SUMMARY OF DISPERSION MODELING ANALYSIS RESULTS

Pollutant	Averaging Period	Modeled Ambient Concentration (μg/m³)	Background Concentration (μg/m³)	Total Concentration (μg/m³)	IDAPA AAC (μg/m³)	NAAQS (μg/m³)
DM	24-Hour	49.90	76	125.90		150
P M ₁0	Annual	7.59	27	34.59		50
NO _X	Annual	9.00	17	26	440	100
Acetaldehyde	Annuai	0.34		EC OX ED	0.45	o==
Arsenic	Annual	0.00003		0 W to	0.00023	200
Benzene	Annual	0.09756	***	all beyond	0.12	
Cadmium	Annual	0.00018			0.00056	ಪಹಗು
Formaldehyde	Annual	0.073		10 444	0.077	
Nickel	Annual	0.00034			0.0042	

The results of this dispersion modeling analysis shown above indicate that the construction of the Facility will not cause or significantly contribute to a violation of the PM_{10} or NO_2 National Ambient Air Quality Standards (NAAQS) or Idaho Administrative Procedures Act (IDAPA)'s Acceptable Ambient Concentrations (AACs) of Toxic Air Pollutants (TAPs).

1.0 INTRODUCTION

Natural Resource Group, LLC (NRG) has performed a revised air dispersion modeling analysis for the Pacific Ethanol Magic Valley, LLC (Facility) facility located in Burley, Idaho, using the United States Environmental Protection Agency's (USEPA's) AMS/EPA Regulatory Model (AERMOD) model. AERMOD is a steady-state Gaussian plume model recommended by the USEPA for assessing pollutant impacts from facilities with emission points influenced by building downwash, such as the Magic Valley ethanol plant. This dispersion modeling analysis is required as part of a revision to the amendment application for the authority to construct submitted September 2008 to the Idaho Department of Environmental Quality (IDEQ).

Updated emission rates and stack dimensions are contained in Appendix A.

2.0 FACILITY EMISSIONS SOURCES

2.1 Potential Emissions

Air pollutant emissions from the facility are generated by material handling, fuel combustion, and ethanol production process operations. The primary pollutants emitted will be PM/PM_{10} , NO_x , SO_2 , VOC, and CO. In addition, the Facility will emit toxic air pollutant (TAPs). A summary of the potential emissions from the proposed facility constructions and supporting emission calculations are included in the September 2008 amendment application for the authority to construct. Appendix A presents the emission rate of pollutants modeled in this analysis.

2.2 Source Types and Parameters

There are several types of emission sources that can be modeled in AERMOD. These source types include point sources, area sources, and volume sources. The majority of sources modeled are point sources, which consist of emission units that release all (or most) of their emissions out a stack or vent. Some sources, however, are much more complex and difficult to model using mathematical simulations. Fugitive sources such as the emissions from material handling operations do not typically have a single point of emission and are typically categorized as "pseudo" point, area, or volume sources. The Facility sources include conventional point and fugitive sources.

Each source of emissions has several parameters that are required for the dispersion modeling analysis. The parameters for the sources included in this analysis are presented in Appendix A. The facility plot plan is included in Appendix B.

3.0 MODELING METHODOLOGY

USEPA's AERMOD model was used to estimate the potential air quality impacts of the proposed ethanol facility. AERMOD is a steady-state Gaussian plume model recommended by the USEPA for assessing pollutant impacts from facilities with emission points influenced by building downwash, such as the Facility. When conducting a comprehensive NAAQS compliance demonstration, existing background air quality data is combined with modeled impacts and compared against the applicable standard.

3.1 Modeling Applicability

Dispersion modeling has been conducted to evaluate the potential impacts from the proposed facility's PM₁₀ and NO_x emissions for comparison to the applicable short-term and annual significant contribution levels and NAAQS. For TAPs, dispersion modeling was performed to determine the potential impacts from the proposed facility's acetaldehyde, arsenic, benzene, cadmium, formaldehyde, and nickel emitted above Idaho Administrative Procedures Act (IDAPA) 58.01.01.585 and 586 screening emission levels (ELs) for comparison against their Acceptable Ambient Concentrations (AACs).

3.2 Significance Modeling

To determine whether emissions of a pollutant are required to be modeled for comparison with the ambient air standards (full impact analysis), it must be determined if the emissions have a significant impact on ambient air quality. Receptor grids used for determining significance are the same as those used in the refined modeling analysis (see Section 3.6). If the maximum modeled off-site concentration is greater than the significant contribution level (SCL), the source impact is considered significant and a full impact analysis (FIA) must be performed. The SCLs are listed below in Table 3.1.

TABLE 3-1. SIGNIFICANT CONTRIBUTION LEVELS

Pollutant	Significant Contribution Level (µg/m³)			
Pollutant	24-Hour	Annual		
PM ₁₀	5	1		
NO _X		1		

For TAPs, the maximum modeled off-site concentration for the TAP is compared to its AAC for compliance determination. Table 3.2 lists the AACs for the modeled TAPs.

TABLE 3-2. ACCEPTABLE AMBIENT CONCENTRATIONS Pacific Ethanol Magic Valley, LLC – Burley, Idaho

Toxic Air Pollutant	Acceptable Ambient Concentrations (μg/m³)
Acetaldehyde	0.45
Arsenic	0.00023
Benzene	0.12
Cadmium	0.00056
Formaldehyde	0.077
Nickel	0.0042
Total PAHs	0.00034

3.3 Full Impact Analysis (FIA)

Pollutant emissions from a proposed facility or modification, which could have a significant impact on air quality, must be demonstrated to not cause or significantly contribute to a violation of the ambient air quality standards. For major PSD sources, the FIA must demonstrate compliance with the NAAQS and PSD increments. For non-PSD major sources, the FIA must demonstrate compliance with the NAAQS.

The NAAQS were established by the USEPA under the authority of the Clean Air Act. Primary NAAQS define levels of air quality that the USEPA deems necessary to protect public health. Secondary NAAQS define levels of air quality that the EPA judges necessary to protect public welfare from any known, or anticipated adverse effects of a pollutant. Examples of the public welfare that are protected by the secondary NAAQS include wildlife, buildings, national monuments, vegetation, visibility, and property values. The USEPA has NAAQS for the following criteria pollutants: PM₁₀, PM_{2.5}, NO₂, SO₂, CO, ozone, and lead. Table 3.3 lists the NAAQS as well as the compliance demonstration method for the pollutants included in this analysis.

TABLE 3-3. NATIONAL AMBIENT AIR QUALITY STANDARDS
AND COMPLIANCE METHOD

Pollutant	Averaging Period	NAAQS (μg/m³)	Compliance Method
PM ₁₀	24-Hour	150	Highest 2 nd Highest Ambient Concentration
FIVI ₁₀	Annual	50	Highest Ambient Concentration
NO₂	Annual	100	Highest Ambient Concentration

3.4 Modeling Options

All regulatory default options are selected for the analysis.

Based on land use classifications from United States Geological Survey (USGS) topographical maps, the majority (*i.e.*, > 50%) of the land surrounding the proposed facility can be classified as suburban or rural. Therefore, the rural dispersion coefficients are used.¹ Elevated terrain is used in the modeling analysis to accurately account for the mild geographical terrain features surrounding the proposed site. The terrain elevations are established using digital elevation model (DEM) files from the USGS.

3.5 Ambient Air Boundary

The NAAQS and ambient air increments apply to air that is considered ambient. In accordance with the Guideline, ambient air is that portion of the atmosphere, external to buildings, to which the general public has access. In most cases, ambient air boundaries are delineated based on the location of a fence or other significant physical barrier that restricts public access. The proposed site will be fenced. As a result, the ambient air boundary for the facility was assumed to follow the fence line.

3.6 Receptor Grid

AERMOD model concentrations are estimated at discrete receptor locations. The discrete Cartesian receptor grid is designed to identify maximum predicted impacts due to the proposed facility. The following receptor systems were used in this analysis:

¹ Per 40 CFR 51 Appendix W "Guideline on Air Quality Models" Section 8.2.8, the urban/rural classification is determined based on the land use classification of the area that is circumscribed by a 3 kilometer radius about the source. If at least 50 percent of the land is commercial, heavy industrial, light-medium industry, close packed single family dwellings with no driveways, or older style, multi-family dwellings the urban dispersion coefficients may be used. Otherwise the default rural dispersion coefficients shall be used.

- A fenceline receptor grid with receptors placed along the fenceline at an interval distance of 25 meters:
- A tight Cartesian grid extending 200 meters from the site in every direction with receptors located at an interval distance of 25 meters;
- A fine Cartesian grid extending 500 meters from the site in every direction with receptors located at an interval distance of 50 meters;

More distant receptors were included in the original modeling. The receptor count has been reduced because it is clear that the maximum impacts from the facility occur within 500 meters and to speed model run time.

3.7 Meteorological Data

The dispersion modeling analysis was performed using AERMOD-ready meteorological data provided by the IDEQ.

3.8 Building Downwash

Emissions modeled from the Facility were evaluated to determine if the emissions plume may become entrained in turbulent wakes, thus resulting in potentially higher ambient air impacts. These wake effects, also known as downwash, are the result of air flowing around large buildings and structures creating areas, or "zones", of turbulent airflow.

The minimum stack height necessary to avoid downwash effects, known as Good Engineering Practice (GEP) stack height, is defined by the following equation.

$$H_{GFP} = H + 1.5L$$
 (Equation 1)

Where, $H_{GEP} = GEP$ stack height

H = structure or building height

L = the lesser of the structure height or projected width

This equation applies only to stacks located within 5L of a downwash structure. Stacks located more than 5L from the downwash structure are not subject to the wake effects of that structure. If more than one stack at the facility is modeled, the equation must be successively applied to each stack. If more than one structure is modeled, the equation must also be successively applied to each structure. The building downwash determination for this modeling analysis is performed for each stack and structure using the USEPA-approved Building Profile Input Program (BPIPPRM) that is compatible with AERMOD. BPIPPRM will perform the aforementioned calculation for every 10-degree directional interval starting at 10 degrees and going clockwise to 360 (due North).

3.9 GEP Stack Height Determinations

As specified by the USEPA in Appendix W of 40 CFR 51 Section 7.2.5, no stack height credit may be given in excess of the GEP stack height for any source when determining emission limitations for compliance with the NAAQS and PSD increments. As defined in 40 CFR 51.100, GEP stack height is the greater of 65 meters or the height determined using the equation discussed in Section 3.9. The stack heights used for the dispersion

modeling analysis are well below 65 meters. Therefore, the emission rates and stack heights used in the modeling analysis are appropriate for demonstrating compliance with the NAAQS.

4.0 DISPERSION MODELING RESULTS

4.1 Significance Modeling Results

The proposed PM_{10} and NO_X emissions were modeled and compared to the SCLs. Since the impacts from the Facility were predicted to be greater than the SCLs for PM_{10} and NO_X , a full impacts analysis was performed, which requires the addition of nearby sources identified by the IDEQ as significant sources of air contaminants.

The proposed acetaldehyde, arsenic, benzene, cadmium, formaldehyde, and nickel emissions were modeled and compared to their AACs since these TAPs emissions are above their ELs. The dispersion modeling indicated that the TAPs impacts are below the AACs, as shown in Appendix A. Therefore, the proposed construction of the Facility complies with the IDAPA's TAPs AACs.

4.2 Nearby Sources

Facilities that must demonstrate compliance with the NAAQS must also include any sources within 1,000 meters of the proposed site as indicated by IDEQ staff². However, based on correspondence with IDEQ staff³, no significant sources of PM_{10} and NO_X located near the Facility were identified; thus, there were no nearby sources included in the full impacts analysis.

4.3 Background Concentrations

The existing ambient air concentrations must be accounted for when demonstrating compliance with the NAAQS. The existing ambient air concentrations (often referred to as background concentrations) are often estimated using ambient air monitoring data from the air basin that the proposed site is located. This method of estimating the background concentration is conservative because it accounts for the existing air pollutant concentrations including existing stationary source impacts. Therefore, FIA that use the ambient air monitoring data as background concentrations and include nearby sources are double counting the configuration of actual emissions from existing facilities. For this modeling analysis, the background concentration is estimated based on information supplied to NRG by the IDEQ. The background concentrations used in this modeling analysis are shown in Table 4.1.

² Per a October 20, 2006 email from Kevin Schilling, at IDEQ, to Warner Reeser, at Natural Resource Group, "Re: Burley Protocol."

³ Per a October 23, 2006 email from Kevin Schilling, at IDEQ, to Warner Reeser, at Natural Resource Group, "Re: Burley Protocol."

TABLE 4-1. BACKGROUND CONCENTRATIONS FOR BURLEY, IDAHO

Pollutant	Averaging Period	Concentration (μg/m³)
PM ₁₀	24-Hour	76
Fivi ₁₀	Annual	27
NO _X	Annual	17

4.4 NAAQS Analysis

As documented in the modeling results summary table (Appendix A), the total impacts of PM_{10} and NO_X , which includes the modeled impacts from the proposed Facility and existing background concentrations of the pollutants in the Burley, Idaho area, are below the applicable NAAQS for each averaging period. Therefore, the proposed project complies with the PM_{10} and NO_2 NAAQS.

5.0 MODELING RUNS AND OUTPUT

The AERMOD input, output, meteorological data, and BPIP files for the modeling analysis are included on the CD-ROM found in Appendix C.

Table A-1 Point Source Parameters

4		Easting	Northing	Base	Stack	Temperat	Exit	Stack	
Source ID	Source Description	(X)	(Y)	Elevation	Height	ure	Velocity	Diameter	
		(m)	(m)	(m)	(ft)	(°F)	(m/s)	(ft)	
	Corn Receiving Baghouse	268670.5	4711463	1275	65	-459.67	30.593	1.47014436	
	Corn Handling Baghouse	268675.2	4711462	1275	65	-459.67	30.593	1.47014436	
	Corn Bin #1	268681.4	4711486	1275	67	-459.67	2.109	1.12007874	
	Corn Bin #2	268682.5	4711444	1275	67	-459.67	2.109	1.12007874	
	Surge Bin Spot Filters	268683.6	4711465	1275	30	-459.67	0.586	1.5	
	Hammermilling Baghouse	268804.6	4711415	1275	60	-459.67	6.612	3	
	Boiler #1	268818.6	4711561	1275	45	309.992	11.505	3	
	Boiler #2	268824	4711561	1275	45	309.992	11.505	3	
	Boiler #3	268839.4	4711561	1275	45	309.992	11.505	3	
	Cooling Tower 1	268794	4711629	1275	34	69.998	5	19.6850394	
	Cooling Tower 2	268793.8	4711619	1275	34	69.998	5	19.6850394	
	RTO	268852.1	4711560	1275	48.25	170.006	8.5084*	2.75	
SV13	Loadout Flare	268849.3	4711570	1275	25	800.006	4.599507	3	

* Exit Velocity is calculated as the vertical component of the true exit velocity. This stack is positioned at a 45 degree angle.

Table A-2									
Point									
Source									
Emissions									
Source ID	Source Description	PMTEN	NO2	ARSENIC	ENZEN	CADMIUM	NICKEL	FORMALDE	CETALDE
		(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)
	Corn Receiving Baghouse	3.75					3,		
SV02	Corn Handling Baghouse	1.880001							
SV03	Corn Bin #1	0.15							
SV04	Corn Bin #2	0.15							
	Surge Bin Spot Filters	0.079999							
	Hammermilling Baghouse	1.689999							
SV09	Boiler #1	2.47	16.56	6.49E-05	7E-04	3.57E-04	0.000682	0.02429898	
SV10	Boiler #2	2.47				3.57E-04		0.02429898	
SV11	Boiler #3	2.47	16.56	6.49E-05	7E-04	3.57E-04	0.000682	0.02429898	
	Cooling Tower 1	1.645							
	Cooling Tower 2	1.645							
	RTO	0.2	1.31	5.15E-06	0.105	2.83E-05	5.41E-05	0.219	1.24
SV13	Loadout Flare		2.43		0.013				

Table A-3 Area Source Parameters and Emissions

				Northina	D	D.1				Vertical			
	Source ID	Source Description	Easting (X)	Northing (Y)	Base Elevation	Release Height	Easterly	Northerly	Angle from	Dimensio	BENZEN	II.	ACETALD
┈╟╌	Course IB	Cource Description	(m)	(m)	(m)	(ft)	Length (ft)	Length (ff)	North	(ft)	(tou)	DE	<u> </u>
E	QUIPFUG	Equipment Leaks	268735.34		1275		179.9868766	329 98688	0	39.99344	(tpy) 0.00755	(tpy)	(tpy)
	TANKS	Tank Emissions	268679.81			2.0013123	100	100	n	25	0.0202		
	WETCAKE	Ridge Vent Emissions from Wetcake building	268751.94	4711382	1275	41	2.001312336		ő	2.001312		0.0512	0.0256

Table A-4 Volume Source Parameters and Emissions

			Northing	Base	Release	Horizontal	Vertical	
Source ID	Source Description	Easting (X)	(Y)	Elevation	Height	Dimension	Dimension	PMTEN
1		(m)	(m)	(m)	(ft)	(ft)	(ft)	(tpy)
GRAIN1	Grain Handling 1	268660.09	4711472	1275	7.5131234	5.577427822	7.5131234	
GRAIN2	Grain Handling 2	268661.06	4711437	1275	7.5131234	5.577427822	7.5131234	0.973700001

Table A-5 Dispersion Modeling Results

Pollutant	Averaging Period	Modeled Ambient Concentration (µg/m³)	Background Concentration (μg/m³)	Total Concentration (μg/m³)	IDAPA AAC (μg/m³)	NAAQS (μg/m³)
	24-Hour	49.9	76	125.9		150
PM ₁₀	Annual	7.59	27	34.59	W2 NO THO	50
NO _X	Annual	9	17	26		100
Acetaldehyde	Annual	0.34			0.45	
Arsenic	Annual	0.00003			0.00023	
Benzene	Annual	0.09756			0.12	
Cadmium	Annual	0.00018			0.00056	
Formaldehyde	Annual	0.073		m==0	0.077	em ed kel
Nickel	Annuai	0.00034			0.0042	

Attachment B Revised Emission Calculations

Pacific Ethanol Magic Valley, LLC Limited Potential Emissions @ 60 million gallons ethanol production

Stack/	Control	Emission				Criteria Po				
Vent	Equipment	Unit	Emission Sources Associated with	PM	PM ₁₀	PM _{2.6}	SO ₂	NOx	Voc	CO
ID	ID	ID .	Ethanol Operations	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)
SV01	CE03	EU01	Truck Dump Pit	SV01	SV01	SV01				
SV01	CE03	EU01	Rail Dump Pit	SV01	SV01	SV01				
SV01	CE03	SV01	Corn Receiving Baghouse	3,75	3,75	3,75				Tites
SV02	CE02	EU03	Corn Conveyor #1	SV02	SV02	SV02				
SV02	CE02	EU04	Corn Elevator #1	SV02	SV02	SV02				
SV02	CE02	EU05	Corn Conveyor #2	SV02	SV02	SV02	T		***	T
SV02	CE02	EU06	Corn Elevator #2	SV02	SV02	SV02				
SV02	CE02	EU07	Scalper	SV02	SV02	SV02				
SV02	CE02	EU08	Corn Conveyor #3	SV02	SV02	SV02				
SV02	CE02	SV02		1.88	1.88	1.88	-			-
			Corn Handling Baghouse					†		
SV03	CE03	EU09	Corn Bin #1	SV03	SV03	SV03		 		
SV03	CE03	SV03	Corn Bin #1 Spot Filters	0,15	0.15	0.15		***		
SV04	CE04	EU10	Corn Bin #2	SV04	SV04	SV04				
SV04	CE04	SV04	Corn Bin #2 Spot Filters	0,15	0,15	0.15				
SV04	CE05	EU11	Surge Bin	SV05	SV05	SV05				
SV05	CE05	SV05	Surge Bin Spat Filters	0.08	0.08	0.08		***	***	
SV06	CE06	EU12	Hammermill #1	SV06	SV06	SV06				
SV06	CE06	EU13	Hammermill #2	SV06	SV06	SV06				
SV06	CE06	EU14	Hammermill #3	SV06	SV06	SV06				
SV06	CE06	SV06	Hammermilling Baghouse	1.69	1.69	1,69				
SV12	CE09	EU17	Yeast Tank						SV12	
SV12	CE07, CE09	EU18	Fermenter #1						SV12	
SV12	CE07, CE09	EU19	Fermenter #2						SV12	
				 						1
SV12	CE07, CE09	EU20	Fermenter #3						SV12	
SV12	CE07, CE09	EU21	Fermenter #4			 			SV12	
SV12	CE07, CE09	EU22	Beerwell						SV12	
SV12	CE07	SV12	Fermentation Scrubber	***	***				SV12	***
SV12	CE08, CE09	EU16	Liquefaction Tank	-04					SV12	
SV12	CE08, CE09	EU23	De-gas Vessel						SV12	
SV12	CE08, CE09	EU15	Slurry Tank						SV12	
SV12	CE08, CE09	EU24	Beer Stripper						SV12	
SV12	CE08, CE09	EU25	Side Stripper						SV12	
SV12	CE08, CE09	EU26	Rectifier Column						SV12	
SV12	CE08, CE09	EU27	Molecular Sieve						SV12	
SV12	CE08, CE09	EU28	200 Proof Condenser						SV12	
SV12	CE08, CE09	EU29				 			SV12	
			Whole Stillage Tank			 				
SV12	CE08, CE09	EU30	Process Condensate Tank						SV12	
SV12	CE08, CE09	EU31	Evaporator						SV12	
SV12	CE08, CE09	EU32	Centrifuge #1						SV12	
SV12	CE08, CE09	EU33	Centrifuge #2						SV12	
SV12	CE08, CE09	EU41	Centrifuge #3						SV12	
SV12	CE08, CE09	EU42	Centrifuge #4						SV12	
SV12	CE08, CE09	EU43	Centrifuge #5						SV12	
SV12	CE08, CE09	EU34	Syrup Tank						SV12	
SV12	CE08, CE09	EU35	Thin Stillage Tank					***	SV12	
SV12	CE08, CE09	SV12-	Vent Gas Scrubber			***		***	SV12	
SV12	CE09	SV12	Oxidizer**	0.20	0.20	0.20	0.02	1.31	22,63	2.25
SV13	CE10	EU39	Ethanol Truck Loadout*						SV12	
SV13	CE10	EU40	Ethanol Rail Loadout						SV12	
SV13	GE10	EU41	Loadout Flare	neg.	neg,	neg.	neg.	2.43	4,20	4.06
SV09		EU36	Boller#1	2.47	2.47	2.47	0.19	16.56	1.78	10.48
		hobera controlorororororororororororororororororor								ACTION AND ADDRESS OF THE PARTY
SV10		EU37	Boiler #2	2.47	2,47	2.47	0,19	16.56	1.78	10,48
SV11			Boiler#3	2.47	2.47	2.47	0.19	16.56	1.78	10,48
		TK01	190 Proof Tank					***	0.05	
		TK02	Denaturant Tank						0.79	
		TK03	200 Proof Storage Tank						0.19	
		TK04	200 Proof Storage Tank	***	440	***		***	0.19	
			Denatured Ethanol						0.17	
			Denatured Ethanol						0.17	
			Sulfuric Acid Storage Tank					***	1.7E-10	
			Ammonia Storage Tank						3.7E-03	
***			Truck Traffic	20.33	3.97	0.60			3.7E-03	
			Fugitive Emissions from Grain Handling	6.44	1.43	1.43				
			Fugitive Emissions from Wet Cake Storage Pile / Loadout						2.67	
			Equipment Leaks						3.02	
			Cooling Towers	3,29	3,29	3.29			****	
			Grain Loadout	1.15	0.26	0.26				
1		FS07	Grain Flaking	1,15	0.26	0.26				
		100/	orani ramig							

^{*} Ethanol Loadout is assumed to be 100% truck loadout for most conservative value.

Natural Resource Group, LLC
Pacific Ethanol Magic Valley, LLC

^{**}The oxidizer controls emissions from the fermentation scrubber, and distillation scrubber.

Pacific Ethanol Magic Valley, LLC Hazardous Air Pollutant Summary

F		T		Loadout		1		Equipment		
Pollutant	Boiler #1	Boiler #2	Boiler#3	Flare	Oxidizer*	Tanks	Wetcake	Leaks	Total	Total
	(tpy)	(tpy)	(tpy)	(tpy)	(tpv)	(tpy)	(tpy)	(tpy)	(lb/hr)	(tpy)
2-Methylnaphthalene		7.79E-06	7.79E-06	 	6.18E-07			1	5.48E-06	2.40E-05
3-Methylchloranthrene	5.84E-07	5.84E-07	5.84E-07		4.64E-08				4.11E-07	1.80E-06
7.12-Dimethylbenz(a)anthracene	5.19E-06	5.84E-07	5.19E-06		4.12E-07				2.60E-06	1.14E-05
Acenaphthene	5.84E-07	5,84E-07	5.84E-07		4.64E-08		***		4.11E-07	1.80E-06
Acenaphthlyene	5.84E-07	5.84E-07	5,84E-07		4,64E-08	_		_	4.11E-07	1,80E-06
Acetaldehyde					1.24E+00		2.56E-02	6.04E-04	2.89E-01	1.27E+00
Acrolein					2.64E-01	_	4.22E-03		6,13E-02	2.69E-01
Anthracene	7.79E-07	7.79E-07	7.79E-07		6.18E-08	_	_		5.48E-07	2,40E-06
Arsenic	6.49E-05	6.49E-05	6,49E-05		5,15E-06	T			4.56E-05	2.00E-04
Benzo(a)anthracene	5.84E-07	5.84E-07	5.84E-07		4.64E-08				4.11E-07	1.80E-06
Benzene	6.82E-04	6.82E-04	6.82E-04	1.29E-02	1.05E-01	2.02E-02		7.55E-03	3.38E-02	1.48E-01
Benzo(a)pyrene	3.90E-07	3.90E-07	3.90E-07		3.09E-08			-	2.74E-07	1.20E-06
Benzo(b)fluoranthene	5.84E-07	5.84E-07	5.84E-07		4.64E-08				4.11E-07	1.80E-06
Benzo(g,h,i)perylene	3.90E-07	3.90E-07	3.90E-07		3.09E-08				2.74E-07	1.20E-06
Benzo(k)fluoranthene	5.84E-07	5.84E-07	5.84E-07		4.64E-08				4.11E-07	1.80E-06
Beryllium	3.90E-06	3.90E-06	3.90E-06		3.09E-07		_	_	2.74E-06	1.20E-05
Cadmium	3,57E-04	3,57E-04	3.57E-04		2.83E-05				2.51E-04	1.10E-03
Carbon Disulfide					1.05E-04	4.05E-04		6.04E-05	1,30E-04	5.70E-04
Chromium	4.54E-04	4.54E-04	4.54E-04		3.61E-05				3.20E-04	1.40E-03
Chrysene	5.84E-07	5.84E-07	5.84E-07		4.64E-08		***		4.11E-07	1.80E-06
Cobalt	2.73E-05	2.73E-05	2.73E-05		2.16E-06				1.92E-05	8.40E-05
Cumene	_				2.10E-04	8.09E-05		3.02E-03	7.56E-04	3.31E-03
Dibenzo(a,h)anthracene	3.90E-07	3.90E-07	3.90E-07		3.09E-08	***			2.74E-07	1.20E-06
Dichlorobenzene	3.90E-04	3,90E-04	3,90E-04		3.09E-05				2.74E-04	1,20E-03
Ethyl benzene				1.23E-03	3.15E-02	1.21E-02		1.51E-04	1.03E-02	4.50E-02
Fluoranthene	9.74E-07	9.74E-07	9.74E-07		7.73E-08				6.85E-07	3.00E-06
Fluorene	9.09E-07	9.09E-07	9.09E-07		7.21E-08				6.39E-07	2,80E-06
Formaldehyde	2.43E-02	2.43E-02	2.43E-02		2.19E-01		5.12E-02		7.84E-02	3.43E-01
Formic Acid		_			3.53E-01			_	8.06E-02	3.53E-01
Hexane	5.84E-01	5.84E-01	5.84E-01	5.41E-02	7.79E-02	1.21E-02		1.51E-01	4.68E-01	2.05E+00
Indeno(1,2,3-cd)pyrene	5.84E-07	5.84E-07	5.84E-07		4.64E-08				4.11E-07	1.80E-06
Manganese		1.23E-04	1.23E-04		9.79E-06				8.67E-05	3.80E-04
Mercury		8.44E-05	8.44E-05		6.70E-06			_	5.93E-05	2.60E-04
Methanol					7.21E-02		3.20E-02	6.04E-04	2.39E-02	1.05E-01
Naphthalene	1.98E-04	1.98E-04	1.98E-04		1.57E-05				1.39E-04	6.10E-04
Nickel		6.82E-04	6.82E-04		5,41E-05				4.79E-04	2.10E-03
Phenanathrene			5,52E-06		4,38E-07				3.88E-06	1,70E-05
Pyrene		1.62E-06	1,62E-06		1,29E-07				1,14E-06	5,00E-06
Selenium		7.79E-06	7.79E-06		6.18E-07				5.48E-06	2.40E-05
Toluene			1.10E-03	4.50E-03	1.05E-01	4.05E-02		1.51E-02	3.85E-02	1.69E-01
Xylenes	_			6.06E-03	1.05E-01	4.86E-02		1.51E-03	3.68E-02	1.61E-01
Total	0.61	0.61	0.61	0.08	2.57	0.13	0.11	0.18	1.12	4.92

Boller #1
Firing Capacity:
Heat Value:
Fuel Burning Capacity:
Stack Gas Flow Natural Gas 75.6 MMBTU/hr 1,020 BTU/cf 0.0741 MMCf/hr 15,678 dscfm

Stack Gas Flow	10,070	uscim	
Pollutant	Emission Factor* (lb/MMBtu)	Emission Rate (fb/hr)	Max. Uncontrolled Emissions (tpy)
PM	7.45E-03	0.56	2.47
PM ₁₀ /PM _{2.5}	7,45E-03	0.56	2,47
SO ₂	5.88E-04	0.04	0.19
NO _x **	5.00E-02	3.78	16.56
voc	5,39E-03	0.41	1.78
CO***	3.23E-05	2.39	10.48

*Emission Factors from Fifth Edition AP-42, Section 1.4, "Natural Gas Combustion", 7/98.

**Based on manufacturer guarantee.

***Based on manufacturer estimated emissions of 50 ppm,v, given in lb/cf.

Boiler #3
Firing Capacity:
Heat Value:
Fuel Burning Capacity:
Stack Gas Flow

75.6 MMBTU/hr 1,020 BTU/of 0.0741 MMC/fhr 15,678 dscfm

Pollutant	Emission Factor* (lb/MMBtu)	Emission Rate (lb/hr)	Max. Uncontrolled Emissions (tpy)
PM	7.45E-03	0.56	2.47
PM ₁₀ /PM _{2.5}	7.45E-03	0.56	2.47
SO₂	5,88E-04	0.04	0.19
NO _x **	5.00E-02	3.78	16.56
VOC	5,39E-03	0.41	1.78
CO***	3.23E-05	2.39	10.48

*Emission Factors from Fifth Edition AP-42, Section 1.4, "Natural Gas

***Based on manufacturer estimated emissions of 50 ppm,v, given in lb/cf.

Boller #2 75,6 MMBTU/hr 1,020 BTU/cf 0.0741 MMCf/hr Firing Capacity:
Heat Value:
Fuel Burning Capacity:
Stack Gas Flow

Pollutant	Emission Factor* (lb/MMBtu)	Emission Rate (lb/hr)	Max. Uncontrolled Emissions (tpy)
РМ	7.45E-03	0.56	2.47
PM ₁₀ /PM _{2.5}	7.45E-03	0.56	2.47
SO ₂	5.88E-04	0.04	0.19
NO _x **	5,00E-02	3.78	16.56
VOC CO***	5,39E-03	0.41	1.78
CO***	3.23E-05	2.39	10.48

*Emission Factors from Fifth Edition AP-42, Section 1.4, "Natural Gas

Combustion", 7/96,

**Based on manufacturer guarantee.

***Based on manufacturer estimated emissions of 50 ppm,v, given in lb/of.

HAP Calculations Boller #1

		HAP Calculatio		Boile	er #2	Boll	er #3
	Emission	Poter		Pote			ntial
	Factor	Emiss			sions		sions
Pollutant	(Ib/MMBtu)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
2-Methylnaphthalene	2.35E-08	1.8E-06	7.8E-06	1.8E-06	7.8E-06	1.8E-06	7.8E-06
3-Methylchioranthrene	1.76E-09	1.3E-07	5,8E-07	1,3E-07	5.8E-07	1.3E-07	5.8E-07
7.12-Dimethylbenz(a)anthracene	1,57E-08	1,2E-06	5.2E-06	1.2E-06	5.2E-06	1.2E-06	5.2E-06
Acenaphthene	1,76E-09	1.3E-07	5.8E-07	1.3E-07	5,8E-07	1.3E-07	5,8E-07
Acenaphthlyene	1.76E-09	1.3E-07	5.8E-07	1.3E-07	5.8E-07	1.3E-07	5.8E-07
Anthracene	2.35E-09	1.8E-07	7.8E-07	1.8E-07	7.8E-07	1.8E-07	7.8E-07
Arsenic	1.96E-07	1.5E-05	6.5E-05	1.5E-05	6.5E-05	1.5E-05	6.5E-05
Benzo(a)anthracene	1.76E-09	1,3E-07	5.8E-07	1.3E-07	5.8E-07	1.3E-07	5.8E-07
· · · · · · · · · · · · · · · · · · ·							
Benzene	2,06E-06	1.6E-04	6.8E-04	1.6E-04	6.8E-04	1.6E-04	6.8E-04
Benzo(a)pyrene	1,18E-09	8.9E-08	3.9E-07	8.9E-08	3.9E-07	8.9E-08	3.9E-07
Benzo(b)fluoranthene	1.76E-09	1.3E-07	5.8E-07	1.3E-07	5.8E-07	1.3E-07	5.8E-07
			1			l .	
Benzo(g,h,l)perylene	1.18E-09	8.9E-08	3.9E-07	8.9E-08	3.9E-07	8.9E-08	3.9E-07
Benzo(k)fluoranthene	1.76E-09	1.3E-07	5.8E-07	1.3E-07	5.8E-07	1.3E-07	5.8E-07
Berylium	1.18E-08	8.9E-07	3.9E-06	8.9E-07	3,9E-06	8,9E-07	3,9E-06
Cadmium	1,08E-06	8.2E-05	3.6E-04	8.2E-05	3.6E-04	8.2E-05	3.6E-04
Chromium	1,37E-06	1,0E-04	4.5E-04	1.0E-04	4.5E-04	1.0E-04	4.5E-04
Chrysene	1,76E-09	1,3E-07	5.8E-07	1.3E-07	5.8E-07	1.3E-07	5.8E-07
Cobalt	8.24E-08	6.2E-06	2.7E-05	6.2E-06	2.7E-05	6.2E-06	2.7E-05
Dibenzo(a.h)anthracene	1.18E-09	8,9E-08	3,9E-07	8,9E-08	3.9E-07	8.9E-08	3.9E-07
Dichlorobenzene	1.18E-08	8,9E-05	3.9E-04	8.9E-05	3.9E-04	8.9E-05	3.9E-04
Fluoranthene	2.94E-09	2.2E-07	9.7E-07	2.2E-07	9.7E-07	2.2E-07	9.7E-07
Fluorene	2.75E-09	2.1E-07	9.1E-07	2.1E-07	9.1E-07	2.1E-07	9.1E-07
Formaldehyde	7.35E-05	5.6E-03	2.4E-02	5.6E-03	2.4E-02	5.6E-03	2.4E-02
Hexane	1.76E-03	1.3E-01	5.8E-01	1.3E-01	5.8E-01	1.3E-01	5.8E-01
Indeno(1,2,3-cd)pyrene	1.76E-09	1.3E-07	5.8E-07	1.3E-07	5.8E-07	1.3E-07	5.8E-07
Manganese	3.73E-07	2.8E-05	1.2E-04	2.8E-05	1.2E-04	2.8E-05	1.2E-04
Mercury	2.55E-07	1.9E-05	8.4E-05	1.9E-05	8.4E-05	1.9E-05	8.4E-05
Vaphthalene	5.98E-07	4.5E-05	2.0E-04	4.5E-05	2.0E-04	4.5E-05	2.0E-04
Nickel	2.06E-06	1.6E-04	6,8E-04	1.6E-04	6.8E-04	1.6E-04	6.8E-04
Phenanathrene	1.67E-08	1,3E-06	5.5E-06	1.3E-06	5.5E-06	1.3E-06	5.5E-06
Pyrene	4.90E-09	3.7E-07	1.6E-06	3.7E-07	1,6E-06	3.7E-07	1.6E-06
Selenium	2.35E-08	1.8E-06	7.8E-06	1.8E-06	7.8E-06	1.8E-06	7.8E-06
Toluene	3.33E-06	2.5E-04	1.1E-03	2.5E-04	1.1E-03	2.5E-04	1.1E-03
Total	U,0011 00	0.14	0.61	0.14	0.61	0.14	0.61
Emission Factors from AP-42, 5th E	dition Section 1.4 "Ex			V.117	0.01	4,17	4.01

Pacific Ethanol Magic Valley, LLC Grain Hammermilling Emission Calculations

Process Data
Grain Required for 60.00 MMgal EtOH:
Grain Density:
Total Grain Receiving Throughput:

22.5 MM bushels/yr = 56 lb/bushel 629,213 tpy = 829,213

71.8 ton/hr

Total Grain Loadout Throughput:

1,500 tons/day 547,500 tpy

62.5 ton/hr

Wet Cake: Wet Cake Handling (32% solids):

140,289 lb/hr + 2000 lb/ton =

140,289 lb/hr 70.1 ton/hr

<u>Emission Calculation Method</u>
Uncontrolled Potential Emissions = Flow Rate (DSCFM) · Emission Factor (gr/DSCF) + 7,000 gr/lb · 60 min/hr

PM/PM₁₀/PM_{2.6} Emissions from Grain Receiving, Handling, and Hammermilling

Stack	Emission	Flow Rate	Emission Factor	Contr Emis	
L ID	Source	(DSCFM)	(gr/DSCF)	(lb/hr)	(tpy)
SV01	Corn Receiving Baghouse	20,000	0.005	0.86	3.75
SV02	Corn Handling Baghouse	10,000	0.005	0.43	1.88
SV03	Corn Bin #1 Spot Filters	400	0.01	0.03	0.15
SV04	Corn Bin #2 Spot Filters	400	0.01	0.03	0.15
SV05	Surge Bin Spot Filters	200	0.01	0.02	0.08
\$V06	Hammermilling Baghouse	9,000	0.005	0.39	1.69

 $\underline{\textit{Emission Calculation Method}}\\ \textbf{Uncontrolled Potential Emissions} = \textbf{Throughput (ton/hr)} \cdot \textbf{Emission Factor (lb/ton)} \cdot 8,760 \text{ hr/yr} \cdot 1 \text{ ton/2000 lb}$

Eucitive DM Emissions from Grain Handling

	ruginve	PM Emissions non	i Grain Handing						
			AP-42* Emission	Uncontrolled PM					otured M
Stack	Emission	Throughput	Factor	Emis	sions	Capture	l	Emis	sions
ID.	Source	(ton/hr)	(lb/ton)	(lb/hr)	(tpy)	Efficienc	y I	(lb/hr)	(tpy)
FS02	Fugitive Emissions from Grain Handling	420.0	0.035	14.70	64.39	10% unc	aptured	1.47	6.44
FS06	Fugitive Emissions from Grain Loadout	75.0	0,035	2.63	11.50	10% unc	aptured	0.26	1.15
FS07	Fugitive Emissions from Grain Receiving for Flaking	75.0	0,035	2.63	11.50	10% unc	aptured	0.26	1.15

*Emission factors taken from AP-42 Section 9.9.1, 6/98.

Fugitive PM₁₀/PM_{2,5} Emissions from Grain Handling

		10 210						
			AP-42*	Uncontrolled			Unca	otured
			Emission	PM ₁₀ /	PM _{2.5}		PM ₁₀	PM _{2.6}
Stack	Emission	Throughput	Factor	Emiss	sions	Capture	Emis	sions
ID	Source	(ton/hr)	(lb/ton)	(lb/hr)	(tpy)	Efficiency	(lb/hr)	(tpy)
FS02	Fugitive Emissions from Grain Handling	420.0	0.0078	3.28	14.35	10% uncaptured	0.33	1.43
FS06	Fugitive Emissions from Grain Loadout	75.0	0.0078	0.59	2.56	10% uncaptured	0.06	0.26
FS07	Fugitive Emissions from Grain Receiving for Flaking	75.0	0.0078	0.59	2,56	10% uncaptured	0.08	0.26

*Emission factors taken from AP-42 Section 9.9.1, 6/98.

Pacific Ethanol Magic Valley, LLC **Fermentation Process**

 $\underline{\text{Process Data}}$ VOC and HAP emissions are controlled by the CO_2 scrubber and the Oxidizer.

Potential VOC Emissions

Control Unit	Scrubber/RTO
Estimated Total Control Efficiency	98.0%
Compiled stack test data:	
VOC as carbon (ppm,d) ^[1]	186.45
VOC as carbon (ppm,d) (Assuming additional 50% control from oxidizer)	93.22
Molecular weight of carbon	12
Mass VOC/ Mass Carbon ratio ^[1]	1.97
Non-condensable gas flow rate (dscfm) (based on stack test)	12,000
Potential Emissions:	
Controlled VOC as carbon emission rate	2.09 lb/hr
Uncontrolled Potential Emissions ⁽²⁾	206,20 lb/hr
	903.17 ton/yr_
Potential Emissions from CO ₂ Scrubber	4.12 lb/hr
	18,06 tons/yr

^[1] From compiled stack test data.

Potential HAP Emissions

	Compiled Stack Test Concentration		Additional Control ^[1]	Contre Emissio	
HAP	(ppm, d)	Molecular Weight	(%)	(lb/hr)	(ton/yr)
Formaldehyde ⁽²⁾	0.4	60.05	0%	0.0422	0.185
Methanol ^[3]	0.5	56.06	75%	0.014	0.06
Acetaldehyde ⁽³⁾	4.6	96.09	83%	0.145	0.64
Formic Acid ^[3]	1.9	46.03	50%	0.0797	0.3492
Acrolein (ND) ^[3]	0.1	46.03	50%	0.0046	0.0201
Total				0.2860	1.2526

^[2] Based on the 98% estimated control efficiency. Actual achieved efficiency should be 99%.

^[1] Additional control achieved by oxidizer
[2] Based on maximum measured concentration in stastical data set
[3] Based on compiled stack test data

Pacific Ethanol Magic Valley, LLC Distillation Process

<u>Process Data</u> Emissions controlled by the vent gas scrubber and Oxidizer

Potential VOC Emissions

Control Unit	Scrubber
Estimated Total Control Efficiency	98.0%
Compiled stack test data:	
√OC as carbon (ppm,d) ^[1]	379.66
Molecular weight of carbon	12
Mass VOC/ Mass Carbon ratio ^[1]	1.97
Non-condensable gas flow rate (dscfm) (based on stack test data)	380
Potential Emissions:	
Controlled VOC as carbon emission rate	0.27 lb/hr
Jncontrolled Potential Emissions ^[2]	26.51 lb/hr
	116.12 ton/yr
Potential Emissions from Vent Gas Scrubber	0.53 lb/hr
	2.32 tons/yr

Potential HAP Emissions

	Compiled stack Test Concentration				rolled on Rate
НАР	(ppm, d)	Molecular Weight	Safety factor ^[1]	(lb/hr)	(ton/yr)
Formaldehyde ^[2]	2,0	33,03	2.0	0.0078	0.034
Methanol ^[3]	0.4	32.04	3.0	0.0021	0.01
Acetaldehyde ^[3]	10.0	44.05	5.3	0.1380	0.60
Formic Acid ^[3]	0.3	46.03	1.0	8000.0	0.0037
Acrolein (ND) ⁽³⁾	0.2	56.06	99.0	0.0558	0.2443
Total				0.2045	0.8958

^[1] Formaldehyde safety factor is based on the range of measured concentrations in the stastical data set [2] Based on maximum measured concentration in stastical data set [3] Based on compiles stack test data

^[1] From compiled stack test data.
[2] Based on the 98% estimated control efficiency

Pacific Ethanol Magic Valley, LLC Oxidizer Combustion Calculations

Oxidizer

Max Firing Capacity
Usable Firing Capacity:

6,000,000 BTU/hr 6,000,000 BTU/hr

Primary Fuel Type: Heat Value:

Natural Gas 1,020 BTU/cf

Pollutant	Emission Factor* (lb/MMBtu)	Emission Rate (lb/hr)	Max. Uncontrolled Emissions (tons/yr)
PM	0.00775	0.047	0.20
PM ₁₀	0.00775	0.047	0.20
Sox	0.00059	0.0035	0.02
NO _x **	0.05000	0,300	1.31
VOC	0.00561	0.034	0.15
co	0.08568	0.514	2,25

Pacific Ethanol Magic Valley, LLC Oxidizer HAP Calculations

HAP Emissions

	Emission Factor*		ential ssions
Pollutant	(lb/MMBtu)	(lb/hr)	(tpy)
The second district of the second	2.35E-08	1.4E-07	6.2E-07
2-Methylnaphthalene	1.76E-09	1.4E-07	4.6E-08
3-Methylchloranthrene		9.4E-08	
7,12-Dimethylbenz(a)anthracene	1.57E-08		4.1E-07
Acenaphthene	1.76E-09	1.1E-08	4.6E-08
Acenaphthlyene	1.76E-09	1.1E-08	4.6E-08
Anthracene	2,35E-09	1.4E-08	6.2E-08
Arsenic	1.98E-07	1.2E-08	5.2E-06
Benzo(a)anthracene	1.76E-09	1.1E-08	4.6E-08
Benzene	2.06E-06	1.2E-05	5,4E-05
Benzo(a)pyrene	1.18E-09	7.1E-09	3.1E-08
Benzo(b)fluoranthene	1.76E-09	1.1E-08	4.6E-08
Benzo(g,h,i)perylene	1.18E-09	7.1E-09	3.1E-08
Benzo(k)fluoranthene	1.76E-09	1.1E-08	4,6E-08
Beryllum	1.18E-08	7.1E-08	3.1E-07
Cadmium	1.08E-06	6.5E-06	2.8E-05
Chromium	1.37E-08	8.2E-08	3.6E-05
Chrysene	1.76E-09	1.1E-08	4.6E-08
Cobalt	8.24E-08	4.9E-07	2.2E-06
Dibenzo(a,h)anthracene	1.18E-09	7.1E-09	3.1E-08
Dichlorobenzene	1.18E-06	7.1E-06	3.1E-05
Fluoranthene	2.94E-09	1.8E-08	7.7E-08
Fluorene	2.75E-09	1.6E-08	7.2E-08
Formaldehyde	7,35E-05	4.4E-04	1.9E-03
Hexane	1.76E-03	1.1E-02	4.6E-02
Indeno(1,2,3-cd)pyrene	1.76E-09	1.1E-08	4.8E-08
Manganese	3.73E-07	2.2E-06	9.8E-06
Mercury	2.55E-07	1.5E-06	8.7E-06
Naphthalene	5.98E-07	3.6E-06	1.6E-05
Nickel	2,06E-06	1.2E-05	5.4E-05
Phenanathrene	1.67E-08	1.0E-07	4.4E-07
Pyrene	4.90E-09	2.9E-08	1.3E-07
Selenium	2.35E-08	1,4E-07	6.2E-07
Toluene	3.33E-08	2.0E-05	8.8E-05
Total			0.05

*Emission Factor is from AP-42, 5th Edition, Section 1.4, "External Combustion Sources," 7/98

Pacific Ethanol Magic Valley, LLC Ethanol Loading Rack Emissions

From Fifth Edition AP-42, Section 5.2:

L = 12.46 · S · P · M + T

where:

L = Loading Loss, lb VOC/1000 gal of liquid loaded

S = Saturation Factor (AP-42 Table 5.2-1) P = True Vapor Pressure of Liquid Loaded, psia M = Molecular Weight of Vapors, lb/lb-mole T = Temperature of Bulk Liquid Loaded, R

Ethanol Loadout PTE tpy neg. PM SO2 neg. NOx 2.43 VOC 4.20 CO 4.06

The values of P, T, and M are taken from the TANKS software which calculates the annual average bulk product temperature based on the annual average temperatures for the city of Pocatello, Idaho. The PTE is based on loading the maximum volume of ethanol that can be distilled by the facility plus denaturant at a concentration of 5 % by volume.

The submerged

loading rack on the

Product	Annual Throughput (1000 gal)	Saturation Factor S	Vapor Molecular Weight MW	Product Temperature T (deg R)	True Vapor Pressure P (psia)	Loading Loss (lb/1000 gal)	Uncontrolled Loss (lb/hr)	Uncontrolled Loss (ton/yr)	Controlled Loss (lb/hr)	Controlled Loss (ton/yr)
Rail/Barge Loadout										
Denatured Ethanol	63,000	0.6	50.0449	506.04	0.5284	0.3907	2.81	12.31	0.06	0.25
Truck Loadout										
Gasoline	63,000	1	66	506.04	4.1037	6.6689	47.96	210.07	0.96	4.20
* PTE is based on the hi	gher of the loadou	it scenarios (dec	licated fleet vs. n	ion-dedicated)					Total* =	4.20

ton/vr

ton/yr

Combustion Related Criteria Pollutant Emissions

SO2 is negligible based on minimal H2S levels

PM/PM-10 is negligible based on smokeless design

Mex Annual Ethanol Loadout by Truck:

63,000 1,000 gal per year

Capture:

100 %

Emission	NOx	0.0770	lb/1000 gai loaded	
Factors*	CO	0.1290	lb/1000 gal loaded	
Emissions	NOx	0.55	lb/hr	2.43
	CO	0.93	lb/hr	4.06

^{*} Emission Factors are based on MRW Technologies specifications.

<u>Speciation of VOC Emissions</u>
Speciated Emissions are Estimated Assuming that the VOC emitted has the same composition as Denatured Ethanol Vapor (From TANKS 4.09 output)

Toxics	CAS#	%	SV13	HAP?
		of total	(tpy)	
n-Pentane	00-07-7			
Isopentane	00-07-7			
Heptane	00-07-7			
n-Octane	00-07-7			
Nonane	00-07-7			
Cyclopentane	00-07-7			
TOTAL	00-07-7	14.14%	0.5941	
n-Hexane	110-54-3	1.29%	0.0541	yes
Benzene	71-43-2	0.31%	0.0129	yes
Methylcyclohexane	108-87-2	0.21%	0.0090	
Cyclohexane	110-82-7	0.19%	0.0079	
Toluene	108-88-3	0.11%	0.0045	yes
Ethyl Benzene	100-41-4	0.029%	0.0012	yes
1,2,4-TrimethylBenzene	95-63-6	0.002%	0.0001	
Xylene	1330-20-7	0.14%	0.0061	yes
Ethanol	67-17-5	83.58%	3.5115	
TOTAL	# 254.94.94.04.04.000.000.000.000.000.000.00	100%	4.20	

Pacific Ethanol Magic Valley, LLC Storage Tanks

Undenatured EtOH Denaturant Denatured EtOH 190 Proof 60,000,000 gal/yr 3,000,000 gal/yr 63,000,000 gal/yr 600,000 gal/yr

Tank	Contents	Throughput		Capacity	
TK01	190 Proof (1% of 60,000,000)	600,000	gal/yr	174,500	gallons
TK02	Denaturant	3,000,000	gal/yr	58,750	gallons
TK03	200 Proof Tank (50% of 60,000,000)	30,000,000	gal/yr	174,500	gallons
TK04	200 Proof Tank (50% of 60,000,000)	30,000,000	gal/yr	174,500	gallons
TK05	Denatured EtOH (50% of 63,000,00	31,500,000	gal/yr	587,000	gallons
TK08	Denatured EtOH (50% of 63,000,00	31,500,000	gal/yr	587,000	gallons

	TOTAL Ethanol Emissions (lb/yr) from Tanks 4.09	TOTAL gasoline emissions (lb/yr)	Gasoline (speciated) Cyclohexane 0.5% (lb/year)	Gasoline (speciated) Benzene 2.5% (lb/year)	Gasoline (speciated) Hexane 1.5% (lb/year)	Gasoline (speciated) Pentane 50% (lb/year)	Gasoline (speciated) NeoHexane 31.5% (lb/year)	Gasoline (speciated) Toluene 5% (lb/year)	Gasoline (speciated) Xylene 5% (lb/year)	Gasoline (speciated) Ethyl Benzene 1.5% (lb/year)	Gasoline (speciated) 1,2,4- Trimethyl benzene 2,5% (lb/year)	Carbon Disuifide 0.005% (lb/year)	Cumene 0.01% (lb/year)
Loadout		4201.39	21.01	105,03	63.02	2100.70	1323,44	210.07	210.07	63.02	105.03	0.21	0.42
TK01	108,57	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TK02	0.00	1584.81	7.92	39.62	23.77	792.41	499.22	79.24	79.24	23.77	39.62	0.08	0.16
TK03	380,83	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TK04	380,83	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TK05	288,89	51.63	. 0.26	1.29	0.77	25.82	16.26	2.58	2.58	0.77	1.29	0.00	0.01
TK08	288.89	51.63	0.26	1.29	0.77	25.82	16.26	2.58	2.58	0.77	1.29	0.00	0.01
TOTALS (lb/year)	1448.01	1688.07	8.44	42.20	25.32	844.04	531.74	84.40	84.40	25,32	42.20	0.08	0.17
TOTALS (ton/year)	0.72	0,84	0.00	0.02	0.01	0.42	0.27	0.04	0.04	0.01	0.02	0.00	0.00
TOTALS (lb/hr)	0.17	0.19	0.00	0.00	0.00	0.10	0.08	0.01	0.01	0.00	0.00	0,00	0.00

LIAD	Emissions	fram	Ctorogo	Tanks

	HAT EIII33	ions from Sto									
Pollutant	Emissions Source										
Storage Tanks	TK001	TK002	TK003	TK004	TK005	TK008]				
VOC (lbs/yr)	108.57	1584.81	380.83	380.83	340.52	340.52					
VOC (tons/yr)	0.05	0.79	0.19	0.19	0.17	0.17					
HAP Fractions											
Benzene		2.50E-02			2.50E-02	2.50E-02					
Carbon Disulfide		5.00E-04			5.00E-04	5.00E-04					
Cumene		1.00E-04			1.00E-04	1.00E-04					
Ethylbenzene		1.50E-02			1.50E-02	1.50E-02					
n-Hexane		1.50E-02			1,50E-02	1.50E-02					
Toluene		5.00E-02			5.00E-02	5.00E-02					
Xylenes		5.00E-02			5.00E-02	5.00E-02					
HAP Emissions (tpy)											
Benzene		1.98E-02			2.13E-04	2.13E-04	2.02E-02				
Carbon Disulfide		3.96E-04			4.26E-06	4.26E-06	4.05E-04				
Сителе		7.92E-05			8.51E-07	8.51E-07	8.09E-05				
Ethylbenzene		1.19E-02			1.28E-04	1.28E-04	1.21E-02				
		1.19E-02			1.28E-04	1.28E-04	1.21E-02				
n-Hexane		3.96E-02			1.28E-04 4.26E-04	4.28E-04	4.05E-02				
Toluene		3.96E-02			8.51E-03	4.26E-04 4.26E-04	4.05E-02 4.86E-02				
Xylenes Total	0.00E+00	1.23E-01	0.00E+00		9.41E-03	1.32E-03	1,34E-01				

Pacific Ethanol Magic Valley, LLC Storage Tanks

PV=nRT

		myre-mm-re-mercury min	T	حجسجسنشانسه		
	TKC	7	TKO	8		1
	H2SO4	H2O	NH3	H20		_
Solution	96%	4%	30%	70%		1
MW	98.07	18	17.03	18	g/mol	
V	122,500		649,000		gallons	1
V	16375.8681		86758.6806		ft3	ļ
			12.968	0.322	psia	1
Р	3.81E-08	7.73E-07			bar	
	3.76E-08	7.63E-07	0.8824	0.0219	atm	At 78F
n	1.57E-06		194.993801		mol]
mass	1.54E-04		3320.74		grams	1
111055	3.38E-07		7.31		pounds/yr*	
	1.69E-10		3.65E-03		tons/yr	

^{*}pounds based on volume of saturated air displaced by tanker trucks.